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a b s t r a c t

This paper is concerned with parameter estimation of finite impulse response (FIR) systems with
binary observations. Combining a suitable design of the time-varying thresholds, a kind of sign-error
type unified algorithm with projection is investigated for either deterministic systems or stochastic
systems. The convergence properties of the studied algorithm are established under bounded persistent
excitations. Specifically, for the case without noise, the square convergence rate is proved to be close
to O

(
1
k2

)
with respect to the time step k. For the case with bounded noises, the upper bound of the

estimation error is obtained, which depends on the bound of the noises and the lower bound of the
input persistent excitation condition. For the case with independent and identically distributed (i.i.d.)
stochastic noises, the estimate is shown to converge to the true parameter in the sense of mean square
and almost surely. Besides, the mean square convergence rate of the estimation error is of the order
O
( 1
k

)
. Numerical examples are supplied to demonstrate the theoretical results.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, set-valued systems have increasingly emerged in our
aily life and attracted widespread attention, which could be
ound in plentiful important application fields such as engineer-
ng area or bio-medical fields (Akyildiz et al., 2002; Wang et al.,
010). For instance, in communication systems like ATM (asyn-
hronous transmission mode) networks, the traffic information,
.g., bit rate, queue length, is measured through binary sensors
ith appropriate thresholds (Wang et al., 2003). In automotive
ystems, binary sensors are also often used in such as switching
ensors for exhaust gas oxygen (Brailsford et al., 1993).
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Motivated by extensive applications, the past two decades
have witnessed considerable amounts of works on system iden-
tification using binary-valued data (Carbone et al., 2020; Colinet
& Juillard, 2010; Depraetere et al., 2012; Godoy et al., 2011;
Tan et al., 2021; Wang & Yin, 2007; You, 2015). In the pri-
mary work, Wang et al. (2003) introduced this issue and pro-
posed respectively stochastic and deterministic frameworks to
identify the unknown parameter. Moreover, they provided exact
or approximate solutions to almost all of the basic issues, like
estimation quality evaluation, optimal input design, time com-
plexity or estimate convergence, etc. Since then, stochastic and
deterministic frameworks are developed almost separately under
binary-valued measurements.

Under the stochastic framework, there are a series of achieve-
ments about system identification with binary observations. For
example, empirical measure method was one of the earliest off-
line methods to identify the system parameters with binary-
valued signals (Wang & Yin, 2007; Wang et al., 2003). The su-
pervised learning algorithm such as Support Vector Machines,
was used to estimate unknown parameters for binary-valued sys-
tems by formulating the identification problem as a classification
problem (Goudjil et al., 2015). Expectation maximization method
was proposed to estimate system parameters with set-valued
data (Godoy et al., 2011). All of the above identification methods
are off-line. As for online methods, Guo and Zhao (2013) provided

a kind of recursive projection algorithm for FIR systems and gave
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he convergence properties of the algorithm under certain condi-
ions. Pouliquen et al. (2016) proposed a recursive least squares
lgorithm and gave the bound of the estimation error under
inary-valued observations. Song (2018) developed a stochas-
ic approximation algorithm with expanding truncations for the
ystems with additive ARMA noises and binary measurements. It
s worth noticing that almost all of the above methods depend
n the probability distribution function (PDF) or the statistical
roperties of the noises. Once the noises are removed or the
roperties of noises are not enough good, the above methods are
ut of operation.
Under the deterministic framework, system identification with

inary-valued measurements also has some developments (Casini
t al., 2007, 2011; Jafari et al., 2010; Jafari et al., 2012). For
nstance, Casini et al. (2007, 2011) discussed the optimal input
esign problem for FIR systems and gave a smaller upper bound
f time complexity than Wang et al. (2003). Jafari et al. (2010)
roposed a recursive method to solve the parameter estimation
roblem for the noise-free FIR systems with the known norm of
nknown parameters under binary observations, and then, Jafari
t al. (2012) improved the algorithm using adaptive regulative
oefficient and analyzed the algorithm convergence. However,
he former requires designable inputs, the latter requires that the
orm of unknown parameters is known. These are exactly what
ost practical systems cannot assure.
There are some works attempting to combine the two frame-

orks. For example, Zhao et al. (2009) proposed a joint identi-
ication algorithm by use of the features of both stochastic and
eterministic frameworks, to solve the estimation problem with
ounded stochastic noises and binary-valued observations. They
ntroduced a joint framework, in which two frameworks play
omplementary roles in improving identification accuracy. This is
combination of the advantages of two frameworks rather than
unified method to solve identification problems under the two

rameworks. In essence, it is a deterministic method to solve the
dentification problem under the deterministic framework, and
ice versa.
From the above analysis, almost all of the previous works

re for the stochastic framework or deterministic framework,
r combine the merits of these two frameworks to improve
dentification accuracy. Due to different structures and analysis
ethods of identification algorithms under two frameworks, it is
ifficult to work them with a unified algorithm. So far, no method
an solve simultaneously the system identification problem under
wo frameworks.

Motivated by the above-mentioned facts, this paper inves-
igates a unified identification algorithm for FIR systems with
inary-valued observations under two frameworks. In particular,
kind of binary quantizer with time-varying thresholds is chosen
nd designed to supply a little more information than binary, uni-
orm, and logarithmic quantizers with fixed thresholds. This kind
f binary quantizer makes it possible to estimate the unknown
arameter under bounded noises as well as stochastic noises.
nder stochastic framework, there are some studies about the
ign-error type estimation algorithm and system identification
ith time-varying binary-valued observations (Chen & Yin, 2003;
sáji &Weyer, 2012; Yin et al., 2003; You, 2015; Zhao et al., 2017).
or instance, Chen and Yin (2003) investigated the asymptotic
roperties of a sign-error type estimation algorithm with ex-
anding truncation bounds under stationary and ergodic signals
ith bounded variance. With the help of this sign-error type es-
imation algorithm with expanding truncations, Csáji and Weyer
2012) and Zhao et al. (2017) considered the problem about
dentifying ARX systems and identifying nonlinear FIR systems
espectively with adaptive binary-valued measurements under

.i.d. input signals with bounded variance. In addition, You (2015)

2

developed a stochastic approximation type recursive estimator
for FIR systems with adaptive binary observations under i.i.d.
input signals.

However, all of the above works require i.i.d. inputs or sta-
tionary and ergodic inputs, resulting in their results are limited
to be applied to the adaptive control problem. Therefore, this
paper studies a control-oriented identification algorithm for FIR
systems with binary-valued observations under a persistent ex-
citation condition, which does not need independent and iden-
tically distributed or stationary and ergodic assumptions on the
system input signals. The main contributions of this paper can be
summarized as follows:

• The sign-error type recursive projection algorithm, which
is a kind of sign-error type unified algorithm with projec-
tion and has the same gain as Guo and Zhao (2013), is
investigated for FIR systems with binary-valued observa-
tions under both stochastic framework and deterministic
framework. Actually, it is the first attempt to unify these
two frameworks with one algorithm under persistent exci-
tations. Furthermore, this is also the first result of sign-error
type algorithm in a deterministic setting to the best of our
knowledge.

• For the noise-free case, the square convergence of the algo-
rithm is established and the convergence rate is proved to
be close to O

(
1
k2

)
, which is not only faster than that for the

case with stochastic noises, but also the same order as that
of gradient algorithm in Chen and Guo (1991) with accurate
measurements. In contrast with Jafari et al. (2012), the al-
gorithm studied in this paper does not require knowing the
norm of the unknown parameter in advance.

• For the case with bounded noises, the upper bound of es-
timation error is given under persistent excitations. The
condition on system inputs is broadened from the input
designable condition compared with Casini et al. (2007)
and Casini et al. (2011).

• For the case with stochastic noises, the algorithm conver-
gence is proved in the sense of almost sure and mean square
under persistent excitations. In addition, the mean square
convergence rate of estimation error is established as O

( 1
k

)
,

which is faster than Guo and Zhao (2013). Usually, the
existing results about sign-error type algorithms need the
inputs are i.i.d. (You, 2015) or stationary and ergodic (Chen
& Yin, 2003), which is not required in this paper.

The rest of this paper is organized as follows. Section 2 de-
cribes the identification problem and introduces the sign-error
ype recursive projection algorithm. Section 3 starts the investi-
ation on system identification in the deterministic framework,
ncluding the noise-free case and the bounded noise case, the
onvergence and the convergence rate of the algorithm are es-
ablished. Section 4 is in the stochastic framework and gives
he convergence properties of the algorithm studied for the case
ith stochastic noises. Section 5 gives three numerical examples
o demonstrate the main results. Section 6 gives the concluding
emarks and related future works.

Notations. In this paper, Z and Z+ are the set of integers and
positive integers, respectively. R and Rn are the sets of real num-
ber and n-dimensional real vectors, respectively. ∥x∥ = ∥x∥2 is
the Euclidean norm. In is an n-dimension identity matrix. Besides,
ign{x} is the sign of scalar x. ⌊x⌋ = max{a ∈ Z|a ≤ x} and

⌈x⌉ = min{a ∈ Z|a ≥ x} for x ∈ R. The function I{·} denotes the
indicator function, whose value is 1 if its argument (a formula) is
true, and 0, otherwise.
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. Problem formulation

Consider the FIR system, described by

k+1 = ϕT
k θ + dk+1, k ≥ 0, (1)

where ϕk ∈ Rn, θ ∈ Rn and dk+1 ∈ R are the system input, time-
invariant parameter and noise, respectively. And yk+1 ∈ R is the
ystem output, which cannot be exactly measured and could only
e measured by quantized information

k+1 = I
{yk+1>ϕT

k θ̂k}
− I

{yk+1<ϕT
k θ̂k}

, (2)

here θ̂k is the estimate of θ at time k.
Though this problem has been separately studied in the de-

erministic framework (including the noise-free case and the
ounded noise case) and the stochastic framework (i.e., the case
ith stochastic noises), there is no method that can achieve
ystem identification simultaneously in these two frameworks so
ar. The goal of this paper is to develop a unified algorithm to
stimate the unknown parameter θ based on the system input
k, the binary-valued output sk+1 and the properties of noises in
oth the deterministic framework and the stochastic framework.

.1. Assumptions

In order to proceed our analysis, we introduce some assump-
ions concerning the inputs, the priori information of the un-
nown parameter and the noises.

ssumption 2.1. The input sequence {ϕk} satisfies supk≥1 ∥ϕk∥ ≜
ϕ̄ < ∞. Besides, there exist a positive integer N and a positive
onstant δ such that

1
N

k+N−1∑
i=k

ϕiϕ
T
i ≥ δ2In, ∀k ≥ 1. (3)

Assumption 2.2. There is a known bounded convex compact set
Θ ⊂ Rn such that the unknown parameter θ ∈ Θ . And denote
θ̄ = 2 supη∈Θ ∥η∥.

Assumption 2.3. The noise sequence {dk} is assumed to be
ounded by a known quantity d̄, i.e., |dk| < d̄ for all k ≥ 1.

ssumption 2.4. The noise {dk} is a sequence of i.i.d. random
ariables with zero median. Besides, the density function of d1 is
enoted by f (x) =

dF (x)
dx , which satisfies

inf
x∈[−ϕ̄θ̄ ,ϕ̄θ̄ ]

f (x) ≜ fθ̄ > 0, (4)

where F (·) is the PDF of d1.

Remark 2.1. It is worth pointing that the existence of the
lower bound fθ̄ is required instead of knowing the probability
distribution function F (·) and density function f (·) of the noises,
hen analyzing the convergence of the algorithm. Thus, F (·) and
(·) can be unknown in this paper. Moreover, if the median of dk
s ν ̸= 0, let ϕ̌k = [ϕk, 1]T , θ̌ = [θ, ν]

T and ďk+1 = dk+1 − ν. Then
the original FIR system is converted to yk+1 = ϕ̌T

k θ̌ + ďk+1, which
satisfies Assumption 2.4. Since the algorithm to be designed is
independent of ν, we are able to estimate the median ν of the
oise as well. Therefore, without loss of generality, we assume
hat ν = 0 throughout the paper. Furthermore, there are many
common noises conforming Assumption 2.4, such as Gaussian
white noises.
3

2.2. Algorithm

For a given initial estimate θ̂0, based on the input ϕk and
the binary-valued observation sk+1, the sign-error type recursive
projection algorithm is recursively designed at any iteration k ≥ 0
as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

θ̂k+1 = ΠΘ

(
θ̂k + β

ϕk

rk+1
sk+1

)
,

rk+1 = 1 +

k∑
i=1

ϕT
i ϕi,

(5)

where β > 0 is a constant scalar and ΠΘ (·) is the projection
mapping from Rn to Θ , which is defined as

ΠΘ (ξ ) = argmin
ζ∈Θ

∥ξ − ζ∥, ∀ξ ∈ Rn. (6)

Remark 2.2. The algorithm is motivated by Guo and Zhao
(2013), where sk+1 = F (C − ϕT

k θ̂k) − I{yk+1≤C} and C is the fixed
threshold of binary quantizer. Noting that E[sk+1] = F (C −

ϕT
k θ̂k)−F (C−ϕT

k θ ) and the probability distribution function F (·) of
noises is monotonous, so E[sk+1] shows the information about the
‘‘innovation" of outputs, i.e., the difference between the output
and its estimate. The innovation of output, defined as yk+1−ϕT

k θ̂k,
is often used to construct identification algorithms under accu-
rate measurements (Chen & Guo, 1991). These enlighten us with
the signum of innovation instead of itself or other information
about it to design identification algorithms. Inspired by Guo and
Zhao (2014), we choose ϕT

k θ̂k as the time-varying thresholds of
binary quantizer and sk+1 = sign{yk+1 − ϕT

k θ̂k} in the algorithm.
Compared with Guo and Zhao (2013), the algorithm (5) does not
require the noise PDF to update the recursions, which makes it is
possible to use this algorithm in the noise-free case or the case
that the noise PDF is unknown.

Remark 2.3. (Calamai & Moré, 1987) The projection function
given by (6) has the following property

∥ΠΘ (ξ1) − ΠΘ (ξ2)∥ ≤ ∥ξ1 − ξ2∥, ∀ξ1, ξ2 ∈ Rn.

2.3. Remarks on quantizer’s choice

In this paper, the quantizer (2), chosen to measure the system
output, is the binary quantizer with time-varying thresholds.
Why do we choose this kind of quantizer except for constructing
the ‘‘innovation" of outputs?

Firstly, we consider three typical quantizers, which are binary
quantizer with fixed threshold (Godoy et al., 2011; Wang et al.,
2003), uniform quantizer (Fu & Wang, 2012) and logarithmic
quantizer (Fu & Xie, 2005).

Binary quantizer with fixed threshold: A binary quantizer
qb : R → R is defined as

qb(x) = I{x≤C}, (7)

where C ∈ R is the fixed threshold of binary quantizer.
Uniform quantizer: A uniform quantizer qu : R → R is

defined as

qu(x) = ε

⌊
x
ε

+
1
2

⌋
. (8)

where ε > 0 is the quantization parameter. For a uniform
quantizer, the quantization error is always bounded by ε

2 , i.e.,
|q (x) − x| ≤

ε for all x ∈ R.
u 2



Y. Wang, Y. Zhao, J.-F. Zhang et al. Automatica 135 (2022) 109990

B

o
w
d
w
b
f
a

a
c
q
q
i
o
i
e
2
b
w
b
n
t
v
u

d
s
e
a
t
r T

∥

Logarithmic quantizer: A logarithmic quantizer ql : R → R
is defined as

ql(x) =

⎧⎨⎩ ωi, if 1
1+ρ

ωi < x ≤
1

1−ρ
ωi,

0, if x = 0,
−q(−x), if x < 0,

(9)

where ωi = ω0

(
1−ρ

1+ρ

)i
for i ∈ Z, ω0 > 0 and ρ ∈ (0, 1) is the

quantization parameter.
As for the noise-free case, Jing and Zhang (2019) proved esti-

mation error is O(ε) for noise-free ARMAX systems with uniform
quantizer (8) under persistent excitations. Actually, the accu-
rate parameter estimation cannot be realized for the noise-free
case with these three quantizers to the best of our knowledge,
when the inputs satisfy persistent excitation condition. A simple
example is given to show that,

x = au,

where a ∈ R is unknown and a ̸= 0. Let u ≡ 1, which satisfies the
bounded persistent excitation condition (i.e., Assumption 2.1).

Using binary quantizer (7), we get a > C or a ≤ C . It can be
seen that a ∈

[
qu(a) −

ε
2 , qu(a) +

ε
2

)
with uniform quantizer (8).

y logarithmic quantizer (9), we learn a ∈

(
(1−ρ)iω0
(1+ρ)i+1 ,

(1−ρ)i−1ω0
(1+ρ)i

]
r
(
−

(1−ρ)i−1ω0
(1+ρ)i

, −
(1−ρ)iω0
(1+ρ)i+1

]
, i ∈ Z. These are the only information

e can get with u ≡ 1 and three quantizers. Whatever we
esign algorithms, we cannot identify accurately the parameter
ith these quantizers. Moreover, we learn that the parameter can
e accurately estimated if quantizer parameters ε and ρ are zero
or the uniform quantizer and the logarithmic quantizer. But it is
ccurate measurements rather than quantized measurements.
From the above analysis, parameter estimation cannot be re-

lized accurately under persistent excitations for the noise-free
ase, no matter how we choose binary, uniform or logarithmic
uantizer with any fixed thresholds. Thus, we choose the binary
uantizer with time-varying thresholds, which can provide more
nformation about the parameter than fixed thresholds. More-
ver, there are lots of applications about time-varying thresholds
n practical fields (Knudson et al., 2016; Zahabi et al., 2017). An
xample is the coding process in communications (Akyildiz et al.,
002), which is a kind of protocol that can be adjusted on the
asis of actual needs. In this paper, the binary quantizer sk+1
ith time-varying thresholds tells whether the actual output is
igger than its estimate or not, which replaces the role of the
oise PDF, and with which we can adjust the iteration direction of
he algorithm to estimate unknown parameters. Therefore, time-
arying thresholds are the key to achieve system identification
nder persistent excitations for the noise-free case.
There are some existing studies of system identification un-

er binary measurements with time-varying thresholds in the
tochastic framework (Csáji & Weyer, 2012; You, 2015; Zhao
t al., 2017), which are based on the sign-error type estimation
lgorithms (Chen & Yin, 2003; Yin et al., 2003). In these studies of
he sign-error type estimation methods, the following condition is
equired in convergence analysis. The sequence {(yk+1, ϕk)} is sta-

tionary and ergodic such that E
(

y2k+1 yk+1ϕ
T
k

yk+1ϕk ϕkϕ
T
k

)
= R > 0. It

is easy to see that this condition cannot be satisfied for the noise-
free case, since yk+1 is linearly dependent on ϕk. In addition, Csáji
and Weyer (2012), You (2015) and Zhao et al. (2017) studied
system identification with these time-varying thresholds for i.i.d.
stochastic noise case, whose theoretic analyses depended on the
statistical properties of noises. Thus, their analysis methods are
inapplicable to the noise-free case.
4

3. Deterministic framework

This section will focus on the convergence analysis of the al-
gorithm (5) under the deterministic framework. The convergence
properties will be established for the noise-free and bounded
noise case, respectively. It is worth noticing that the bounded
noise case includes the bounded stochastic noise case. The reason
classifying the bounded noise case as the deterministic frame-
work, is that only the bound of noises is used when analyzing
the algorithm performance for the bounded noise case.

3.1. The noise-free case

Generally speaking, parameter estimation for the noise-free
case is more difficult than the stochastic noise case under binary-
valued observations, since the stochastic noise can excite the
information of parameters to the limited binary-valued measure-
ments. As a result, most of the existing recursive algorithms are
derived by the noise PDF, or the convergence analysis depends
on the good statistical properties of the noises (Goudjil et al.,
2015; Guo & Zhao, 2013; Wang et al., 2003). Once the noises are
removed, the above methods are no longer applicable.

In the current studies, there are two methods to estimate the
unknown parameters for the noise-free case with binary-valued
measurements. One is input design method (Casini et al., 2007,
2011; Wang et al., 2003), the other is recursive method (Jafari
et al., 2010; Jafari et al., 2012). The former requires designable
inputs, the latter requires that the norm of the parameter is
known. These limits make the above two methods difficult to be
applied in practice.

In this part, we consider the noise-free case, i.e., dk+1 = 0 for
System (1)–(2), which is described as{

yk+1 = ϕT
k θ,

sk+1 = − sign{ϕT
k θ̃k}.

(10)

where θ̃k = θ̂k − θ is the estimation error.
Firstly, we show the convergence of the algorithm (5) in the

following theorem under the bounded persistent excitation con-
dition.

Theorem 1. For the noise-free FIR system (10), under Assumptions
2.1 and 2.2, the estimate θ̂k defined by the algorithm (5) converges
to the true parameter θ for any initial value θ̂0, i.e.,

lim
k→∞

θ̃k = 0.

Proof. By (5) and Remark 2.3, we have

θ̃ T
k+1θ̃k+1 ≤θ̃ T

k θ̃k +
2βϕT

k θ̃k

rk+1
sk+1 +

β2ϕT
k ϕks2k+1

r2k+1

≤θ̃ T
k θ̃k −

2β|ϕT
k θ̃k|

rk+1
+

β2ϕT
k ϕks2k+1

r2k+1
. (11)

hen, from |sk+1| ≤ 1 and rk+1 ≤ 1 + kϕ̄2 it follows that

θ̃k+1∥
2

≤∥θ̃k∥
2
−

2β|ϕT
k θ̃k|

rk+1
+

β2
∥ϕk∥

2

r2k+1

≤∥θ̃0∥
2
−

k∑
i=0

2β|ϕT
i θ̃i|

ri+1
+

k∑
i=0

β2
∥ϕi∥

2

r2i+1

≤∥θ̃0∥
2
−

k∑
i=0

2β|ϕT
i θ̃i|

1 + iϕ̄2 +

k∑
i=0

β2
∥ϕi∥

2

r2i+1
.
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oticing ∥θ̃k+1∥
2

≥ 0 and
k∑

i=0

∥ϕi∥
2

r2i+1
≤

k∑
i=1

∥ϕi∥
2

ri+1ri
≤

k∑
i=1

(
1
ri

−
1

ri+1

)
≤ 1 −

1
rk+1

< ∞,

e can get
∑k

i=0
2β|ϕT

i θ̃i|

1+iϕ̄2 < ∞, which implies

lim
k→∞

|ϕT
k θ̃k| = 0. (12)

n addition, by Lemma A.1 we have

ϕT
k+jθ̃k| = |ϕT

k+j(θ̃k − θ̃k+j) + ϕT
k+jθ̃k+j|

≤ ∥ϕk+j∥ · ∥θ̃k+j − θ̃k∥ + |ϕT
k+jθ̃k+j|

≤
jβϕ̄

rk+1
+ |ϕT

k+jθ̃k+j|, (13)

for j = 1, 2, . . . ,N − 1. From (3) in Assumption 2.1,

rk+1 ≥ 1 +

⌊
k
N

⌋
N∑

i=1

ϕT
i ϕi = 1 +

⌊
k
N

⌋∑
j=1

jN∑
i=1+(j−1)N

ϕT
i ϕi

≥ 1 +

⌊
k
N

⌋∑
j=1

nλmin

⎛⎝ jN∑
i=1+(j−1)N

ϕiϕ
T
i

⎞⎠
≥ 1 + nNδ2

⌊
k
N

⌋
≥ 1 + nδ2 (k − N) . (14)

From (12)–(14) it follows that limk→∞ |ϕT
k+jθ̃k| = 0 for j =

, 2, . . . ,N − 1, which together with (3) gives

δ2N∥θ̃k∥
2

≤ θ̃ T
k

⎛⎝N−1∑
j=0

ϕk+jϕ
T
k+j

⎞⎠ θ̃k

=

N−1∑
j=0

|ϕT
k+jθ̃k|

2
→ 0, k → ∞.

Thus, we get limk→∞ θ̃k = 0. □

Nextly, we will prove that the square convergence rate of the
estimation error can reach O

(
1
k2

)
under the bounded persistent

xcitation condition.

heorem 2. Under the conditions of Theorem 1, if β >
ϕ̄2

+1
2δ2

, the
stimation error given by the algorithm (5) has the convergence rate

θ̃k∥
2

= O
(

1
kr

)
,

or arbitrary positive number r ∈ (1, 2).

roof. The main idea of proof is as follows.(
1
k

)
→ O

(
1

k
r+1
2

)
→ · · · → O

(
1

kr+
1−r
2m

)
→ O

(
1
kr

)
.

Step 1: to prove ∥θ̃k∥
2

= O( 1k ) by Lemma A.3 and Assump-
tion 2.1.

Step 2: to prove ∥θ̃k∥
2

= O
(

1
k1+t1

)
using ∥θ̃k∥

2
= O

( 1
k

)
, where

1 =
r−1
2 > 0.

..
.

5

Step m + 1: to prove ∥θ̃k∥
2

= O
(

1
k1+tm

)
by use of ∥θ̃k∥

2
=(

1
k1+tm−1

)
similarly to Step 2, where tm = tm−1 +

1
2m−1 t1 =

1 +
1
2 t1 + · · · +

1
2m−1 t1 =

2m−1
2m (r − 1).

Finally, repeating the above process, we can get ∥θ̃k∥
2

= O
( 1
kr
)

for any r ∈ (1, 2) from limm→∞ tm = r − 1.
The detailed proof is given in Appendix B. □

Remark 3.1. This theorem illustrates that the square conver-
gence rate of the algorithm (5) can get close to O

(
1
k2

)
for the

noise-free system (10). As a matter of fact, it is also the fastest
convergence rate that the following gradient algorithm can reach
for the noise-free case with even accurate measurements under
the bounded persistent excitation condition.

Gradient algorithm (Chen & Guo, 1991):⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ̂k+1 = θ̂k +

ϕk

rk+1
(yk+1 − ϕT

k θ̂k),

rk+1 = 1 +

k∑
i=1

ϕT
i ϕi.

(15)

Substituting yk+1 = ϕT
k θ into (15) gives

θ̃k+1 =

(
I −

ϕkϕ
T
k

rk+1

)
θ̃k. (16)

Similarly to Theorem 2, we can get the fastest square convergence
rate of (15) is O

(
1
k2

)
. What is more, we claim that (15) is not

exponential convergent. As Theorem 2.3.2 in Guo (2020) shows,
(16) is exponential stable if and only if there exists h ∈ Z+ such

that infk≥0 λmin

(∑k+h
i=k+1

ϕiϕ
T
i

ri+1

)
> 0. From (14) and the boundness

of ϕk, infk≥0 λmin

(∑k+h
i=k+1

ϕiϕ
T
i

ri+1

)
= 0 for all h ∈ Z+, which

indicates our claim.

3.2. The impact of bounded noises

Parameter estimation under the bounded noise case is more
complex than the noise-free case. In the existing researches
about parameter estimation with binary-valued measurements,
the minimum achievable error is given by the input design
method for the bounded noise case (Casini et al., 2007, 2011;
Wang et al., 2003). But when we broaden the input designable
condition to the bounded persistent excitation condition, what
conclusions can we draw?

For convenience, redescribe the FIR system (1) with binary-
valued observation (2) as follows,{

yk+1 = ϕT
k θ + dk+1,

sk+1 = − sign{ϕT
k θ̃k − dk+1}.

(17)

The difficult point is how to deal with the effect of the bounded
noise, and the following proposition plays a key role in our
analysis.

Proposition 1. If {ϕl ∈ R, l = 1, 2, . . . ,N} satisfy 1
N

∑N
l=1 ϕ2

l ≥

δ2 > 0, then there exists a ∈ (0, 1) such that∑
|ϕl|>aδ

|ϕl| >
∑

|ϕl|≤aδ

|ϕl|.

Proof. Noticing 1
N

∑N
l=1 ϕ2

l ≥ δ2 > 0(δ > 0), there are at most
N − 1 inputs ϕl that satisfy |ϕl| ≤ aδ. Hence, max

∑
|ϕl|≤aδ |ϕl| is

not greater than (N − 1)aδ.
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Noticing 1
N

∑N
l=1 ϕ2

l ≥ δ2, by Pigeonhole principle, there is at
least an input ϕl0 (l0 ∈ {1, 2, . . . ,N}) making |ϕl0 | ≥ δ. Hence,
in
∑

|ϕl≥aδ |ϕl| is not less than δ.
Based on the above analysis, when a ∈ (0, 1

N−1 ) ∩ (0, 1),∑
|ϕl|>aδ

|ϕl| ≥ δ > a(N − 1)δ ≥

∑
|ϕl|≤aδ

|ϕl|.

emark 3.2. This proposition shows that if N inputs satisfy the
ersistent excitation condition, then there exists a constant aδ
uch that the sum of the inputs that are bigger than aδ is greater
han the sum of other inputs. With the help of this idea, the
stimation error could be proved to be reduced by N iterations
or the bounded noise case.

In this part, let β = 1 in the algorithm (5) for the analysis
f simplicity. It is rational since β(β > 0) only affects the
lgorithm convergence rate rather than convergence, according
o the analysis of the noise-free case.

In the following theorem, the upper bound of estimation error
s given, which is related to the noise bound and the lower bound
f the persistent excitation condition.

heorem 3. For the FIR system (17) with bounded noises, if
ssumption 2.1, 2.2 and 2.3 hold, then there exists k0 > 0 for the
stimation error given by the algorithm (5) such that,

θ̃k+N∥ ≤
d̄
αδ

+
Nϕ̄

rk+1
,

or k > k0 and ∀α ∈

(
0, 1

√

N3

)
.

The proof is given in Appendix C. □

emark 3.3. It is worth mentioning that Theorem 3 tries to
heoretically give the smallest upper bound of the estimation
rror. It contains two items: the first item is the main part, which
s a bounded constant d̄

αδ
depending on the inputs and the noises;

he second item Nϕ̄

rk+1
converges to zero as k → ∞ since rk+1 ≥

1+nδ2 (k − N). Even the second item is small, it is necessary since
the norm of the estimation error may be larger than d̄

αδ
in some

special case.

Remark 3.4. From the proof of Theorem 3 in Appendix C, we
learn k0 depends on the noise bound d̄, so this analysis method
cannot be used in the noise-free case. But the estimation error
∥θ̃k∥ is approximate to O( 1k ) when d̄ is sufficiently small, which
onfirms the conclusion of Theorem 2 to some extent.

orollary 3.1. For the 1-order FIR system (17) with bounded noises,
f Assumption 2.1, 2.2 and 2.3 hold, then there exists k0 > 0 such
hat,

θ̃k+N∥ ≤
d̄
αδ

+
Nϕ̄

rk+1
,

or k > k0 and ∀α ∈
(
0, 1

N−1

)
∩ (0, 1).

The proof is similar to that of Theorem 3 except for analyzing
ϕk instead of uk = ϕT

k θ̃k, so the detail proof is omitted.

Remark 3.5. In this section, we show that the sign-error type
recursive projection algorithm can solve identification problems
in the deterministic framework, including the noise-free case and
the bounded noise case. Actually, it is no influence on the algo-
rithm convergence to get rid of projection in the deterministic
framework, since these convergence analyses do not depend on
the priori information of the unknown parameter. In other words,
we can take Θ = Rn in Assumption 2.2 in the deterministic
framework.
6

4. Stochastic framework

In order to show the sign-error type recursive projection algo-
rithm (5) could also solve parameter estimation problems in the
stochastic framework, we consider the FIR system (1)–(2) with
stochastic noises,{

yk+1 = ϕT
k θ + dk+1,

sk+1 = I
{dk+1>ϕT

k θ̃k}
− I

{dk+1<ϕT
k θ̃k}

.
(18)

In this part, we will show the convergence of the algorithm (5)
and give the convergence rate of estimation error for FIR systems
with stochastic noises.

First of all, we establish the almost sure and mean square
convergence of the algorithm under the bounded persistent exci-
tation condition in the following theorem.

Theorem 4. For the FIR system (18) with stochastic noises, if
Assumption 2.1, 2.2 and 2.4 hold, then the estimate given by the
algorithm (5) is both mean-square and almost surely convergent,

lim
k→∞

E∥θ̃k∥
2

= 0,

lim
k→∞

θ̃k = 0, a.s.

Proof. Considering the algorithm (5), from (18) and Remark 2.3,
we have

θ̃ T
k+1θ̃k+1 ≤ θ̃ T

k θ̃k +
2βϕT

k θ̃k

rk+1
sk+1 +

β2ϕT
k ϕks2k+1

r2k+1
.

hen, by |sk+1| ≤ 1 we have

θ̃k+1∥
2

≤ ∥θ̃k∥
2
+

2βϕT
k θ̃ksk+1

rk+1
+

β2
∥ϕk∥

2

r2k+1
. (19)

e define Fk as a σ -algebra generated by d1, d2, . . . , dk. Since
k+1 only depends on dk+1, sk+1 is independent of Fk. Then from
Assumption 2.4, it can be seen

E[sk+1|Fk] =E[sk+1] = E
[
I
{dk+1>ϕT

k θ̃k}
− I

{dk+1<ϕT
k θ̃k}

]
=1 − 2F (ϕT

k θ̃k) = 2
(
F (0) − F (ϕT

k θ̃k)
)
,

where F (·) is the PDF of noises. By differential mean value theo-
rem (Zemouche et al., 2005), there exists ξk between 0 and ϕT

k θ̃k
such that

E[sk+1|Fk] = −2f (ξk)ϕT
k θ̃k. (20)

By Assumption 2.1, 2.2 and 2.4, we have rk+1 ≤ 1 + kϕ̄2, −ϕ̄θ̄ ≤

ξk ≤ ϕ̄θ̄ , and hence,

f (ξk) ≥ fθ̄ . (21)

Thus, from (19)–(21), we get

E[∥θ̃k+1∥
2
|Fk] ≤ ∥θ̃k∥

2
−

4βf (ξk)
rk+1

(ϕT
k θ̃k)2 +

β2
∥ϕk∥

2

r2k+1

≤ ∥θ̃k∥
2
−

4βfθ̄
rk+1

(ϕT
k θ̃k)2 +

β2
∥ϕk∥

2

r2k+1
, (22)

nd

E[∥θ̃k+1∥
2
]

≤E[∥θ̃k∥
2
] −

4βfθ̄
rk+1

E(ϕT
k θ̃k)2 +

β2
∥ϕk∥

2

r2k+1

≤E[∥θ̃k∥
2
] −

4βfθ̄
2E(ϕ

T
k θ̃k)2 +

β2
∥ϕk∥

2

2
1 + kϕ̄ rk+1
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S

E

O

E[∥θ̃0∥
2
] −

k∑
i=0

4βfθ̄
1 + iϕ̄2E(ϕ

T
i θ̃i)2 +

k∑
i=0

β2
∥ϕi∥

2

r2i+1
.

oticing E∥θ̃k+1∥
2

≥ 0 and
k∑

i=0

∥ϕi∥
2

r2i+1
≤

k∑
i=1

∥ϕi∥
2

ri+1ri

≤

k∑
i=1

(
1
ri

−
1

ri+1

)
≤ 1 −

1
rk+1

< ∞,

we can get
∑k

i=0
E(ϕT

k θ̃k)2

1+iϕ̄2 < ∞, which implies

lim
k→∞

E(ϕT
k θ̃k)2 = 0. (23)

In addition, for j = 1, 2, . . . ,N − 1, we have

E(ϕT
k+jθ̃k)

2

≤E
(
ϕT
k+jθ̃k+j

)2
+ E

(
ϕT
k+j(θ̃k+j − θ̃k)

)2
+ 2Eθ̃ T

k+jϕk+jϕ
T
k+j(θ̃k+j − θ̃k).

≤E
(
ϕT
k+jθ̃k+j

)2
+ E

(
ϕT
k+j(θ̃k+j − θ̃k)

)2
+ 2

[
E
(
ϕT
k+jθ̃k+j

)2] 1
2
[
E
(
ϕT
k+j(θ̃k+j − θ̃k)

)2] 1
2
.

By Lemma A.1, we can get E
(
ϕT
k+j(θ̃k+j − θ̃k)

)2
≤ Eβ2ϕ̄4j2/r2k+1,

hich indicates

(ϕT
k+jθ̃k)

2
≤ E

(
ϕT
k+jθ̃k+j

)2
+ E

β2ϕ̄4j2

r2k+1

+ 2
[
E
(
ϕT
k+jθ̃k+j

)2] 1
2

[
E

β2ϕ̄4j2

r2k+1

] 1
2

. (24)

rom (23), (24) and rk+1 ≥ 1 + nδ2 (k − N) we have

lim
k→∞

E(ϕT
k+jθ̃k)

2
= 0, j = 1, 2, . . . ,N − 1. (25)

ence, by Assumption 2.1 and (25), we get

2E∥θ̃k∥
2

≤E

⎡⎣θ̃ T
k

⎛⎝N−1∑
j=0

ϕk+jϕ
T
k+j

⎞⎠ θ̃k

⎤⎦
=

N−1∑
j=0

E(ϕT
k+jθ̃k)

2
→ 0, k → ∞.

which implies
lim
k→∞

E∥θ̃k∥
2

= 0.

On the other hand, E[∥θ̃k+1∥
2
|Fk] ≤ ∥θ̃k∥

2
+

β2
∥ϕk∥

2

r2k+1
, which

ogether with Lemma A.2 and
∑k

i=0
∥ϕi∥

2

r2i+1
< ∞ implies that θ̃k

converges a.s. to a bounded limit. Note that limk→∞ E∥θ̃k∥
2

= 0.
Then, there is a subsequence of θ̃k that converges almost surely
to 0. Consequently, θ̃k almost surely converges to 0. □

Remark 4.1. In fact, the deterministic framework and the
stochastic framework complement each other precisely in some
situations. We demonstrate it by an example, consider the first-
order system yk+1 = ϕkθ + dk+1, where Θ = (−5, 5), {dk} is
i.i.d. and follows U(−3, 3), {ϕk, ϕk ≡ 3} satisfies Assumption 2.1.
It can be calculated that fθ̄ = 0, making the results for the
stochastic noise case are invalid. But by use of the results for
the bounded noise case (Theorem 3), the estimation error of the
algorithm (5) can be smaller than θ́ =

2 after k steps. What is
3 0

7

more, from (20)–(21), the condition (4) in Assumption 2.4 could
be broadened to infx∈[−ϕ̄θ́ ,ϕ̄θ́ ]

f (x) ≜ fθ́ > 0 if ∥θ̃k∥ ≤ θ́ ≤ θ̄ .
Besides, the density function of the noises has a non-zero lower
bound fθ́ =

1
6 on [−ϕ̄θ́ , ϕ̄θ́ ] = [−2, 2]. Then the estimate

given by the algorithm (5) could converge to the true parameter
according to Theorem 4. In this example, the estimation task
can be finished by the conjoint results of both the stochastic
and bounded noise cases, while it cannot be completed by each
deterministic framework or stochastic framework.

Then, the mean square convergence rate of the algorithm (5)
is given in the following theorem with the bounded persistent
excitation condition and stochastic noises.

Theorem 5. For the FIR system (18) with stochastic noises, under
the conditions of Theorem 4, the estimation error given by the
algorithm (5) has the following property:

E∥θ̃k∥
2

= O
(
1
k

)
,

provided that β >
ϕ̄2

+1
4δ2fθ̄

with fθ̄ being defined in Assumption 2.4.

Proof. From (22) we can get

E∥θ̃k+1∥
2

≤E∥θ̃k∥
2
−

4βfθ̄
rk+1

E(ϕT
k θ̃k)2 + E

[
β2ϕ̄2

r2k+1

]

≤E∥θ̃k−N+1∥
2
− 4βfθ̄

k∑
i=k−N+1

E

[
θ̃ T
i ϕiϕ

T
i θ̃i

rk+1

]

+

k∑
i=k−N+1

E

[
β2ϕ̄2

r2k+1

]
. (26)

From (B.4), for k ≥ N we have

−

k∑
i=k−N+1

θ̃ T
i ϕiϕ

T
i θ̃i

ri+1

≤ −
δ2N∥θ̃k−N+1∥

2

rk+1
+ O

(
1

(k − N + 1)2

)
.

Thus, we can get

− 4βfθ̄
k∑

i=k−N+1

E

[
θ̃ T
i ϕiϕ

T
i θ̃i

ri+1

]

≤ −
4δ2βfθ̄N

rk+1
E∥θ̃k−N+1∥

2
+ O

(
1

(k − N + 1)2

)
. (27)

ubstituting (27) into (26) gives

∥θ̃k+1∥
2

≤

(
1 −

4δ2βfθ̄N
rk+1

)
E∥θ̃k−N+1∥

2
+ O

(
1

(k − N + 1)2

)

≤

⌊
k
N

⌋
−1∏

j=0

(
1 −

4δ2βfθ̄N
rk+1−jN

)
E∥θ̃

k+1−
⌊

k
N

⌋
N
∥
2

+

⌊
k
N

⌋∑
j=1

j−1∏
i=0

(
1 −

4δ2βfθ̄N
rk+1−iN

)
O
(

1
(k − jN + 1)2

)
. (28)

n one hand, the first item on the right side of (28) is⌊
k
N

⌋
−1∏ (

1 −
4δ2βfθ̄N
rk+1−jN

)
≤

⌈
k
N ⌉∏ (

1 −
4δ2βfθ̄N
rmN+1

)

j=0 m=κ+1
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w
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≤

⌈
k
N ⌉∏

m=κ+1

(
1 −

4δ2βfθ̄
1 + mϕ̄2

)

=O

⎛⎝ ⌈
k
N ⌉∏

m=κ+1

⎛⎝1 −

4δ2βfθ̄
ϕ̄2+1

m

⎞⎠⎞⎠ , (29)

here κ = ⌈
k
N ⌉ −

⌊ k
N

⌋
.

On the other hand, the second item on the right side of (28) is⌊
k
N

⌋∑
j=1

j−1∏
i=0

(
1 −

4δ2βfθ̄N
rk+1−iN

)
O
(

1
(k − jN + 1)2

)

≤

⌊
k
N

⌋∑
j=1

j−1∏
i=0

(
1 −

4δ2βfθ̄N
rk+1−iN

)
O

(
1

(
⌊ k

N

⌋
− j + 1)2N2

)

≤O

⎛⎜⎝
⌊

k
N

⌋
−1∏

j=0

(
1 −

4δ2βfθ̄N
rk+1−jN

)⎞⎟⎠
+

⌊
k
N

⌋
−1∑

m=1

⌈
k
N ⌉∏

p=κ+m+1

⎛⎝1 −

4δ2βfθ̄
ϕ̄2+1

p

⎞⎠O
(

1
m2N2

)

O

⎛⎝ ⌈
k
N ⌉∏

m=κ+1

⎛⎝1 −

4δ2βfθ̄
ϕ̄2+1

m

⎞⎠⎞⎠
+

⌊
k
N

⌋
−1∑

m=1

⌈
k
N ⌉∏

p=κ+m+1

⎛⎝1 −

4δ2βfθ̄
ϕ̄2+1

p

⎞⎠O
(

1
m2

)
. (30)

hus, from Lemma A.3, substituting (29) and (30) into (28) yields
∥θ̃k∥

2
= O( 1k ) when 4βδ2fθ̄

ϕ̄2+1
> 1. □

Remark 4.2. Comparing with Guo and Zhao (2013), the mean
square convergence rate is improved from O

( ln k
k

)
to O

( 1
k

)
. More-

over, the algorithm (5) does not need stationary ergodicity of
signals and can deal with more types of stochastic noises, con-
trasted with the sign-error type estimation algorithm (Chen &
Yin, 2003). Moreover, this paper does not require the independent
and identically distributed inputs compared to other identifica-
tion works with time-varying binary observations (Csáji & Weyer,
2012; You, 2015; Zhao et al., 2017), which makes the results
be applied to adaptive control problems. Besides, the results of
this paper adapt to more types of noises. For example, Zhao
et al. (2017) need the noises are i.i.d. random variables with
symmetric, continuous, and bounded probability density func-
tion. Accordingly, the noise condition in Assumption 2.4 is more
general.

5. Simulations

In this section, we will illustrate the theoretical results with
three simulation examples.

Example 1: Consider a second-order noise-free FIR system:
yk+1 = ϕT

k θ , where yk+1 only can be measured by binary ob-
servation (2). The true parameter θ = [3, −2]T is unknown,
nly can we learn θ ∈ Θ = [−10, 10] × [−10, 10]. We apply
he sign-error type recursive projection algorithm (5) to give
he estimate θ̂k. Then we choose the inputs ϕk = [ϕ1

k , ϕ
2
k ]

T

atisfying Assumption 2.1 and β = 50 satisfying the condition
f Theorem 2, where ϕi (i = 1, 2) are randomly generated in the
k

8

Fig. 1. The noise-free case.

interval [0.2, 0.7]. Here we repeat the simulation for 500 times to
eliminate the effects of random inputs with same initial estimate
θ̂0 = [1, 0]T .

The simulation results are given in Fig. 1. From it, we can see
that the estimate converges to the true value, and the logarithm
of the square error (SE) is linear with 2 log k, which implies the
convergence rate of this algorithm is close to O( 1

k2
).

Example 2: Consider a second-order FIR system with bounded
noise: yk+1 = ϕT

k θ + dk+1, whose output only can be measured
by binary observation (2). The true parameter θ = [3, −2]T is
unknown, but we learn that θ ∈ Θ = [−10, 10] × [−10, 10]. The
system noise dk is generated as

dk+1 =

⎧⎨⎩
−

1
2 · (−1)k +

1
2k

, k = 3l,
−

2
3 · (−1)k −

1
3k

, k = 3l + 1,
1
3 · (−1)k −

1
3k

, k = 3l + 2,

where l = 1, 2, 3, . . .. Parameter estimate θ̂k is given by the
algorithm (5). The inputs are periodically generated by ϕ2k+1 =

[2, 0]T , ϕ2k = [0, −2]T , which satisfy Assumption 2.1. Then, we
calculate the upper bound of estimation error by Theorem 3,
which is B =

d̄
+

Nϕ̄
=

55
+

4 . From Fig. 2, we can learn
k αδ rk−N+1 81 rk−1
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Fig. 2. The bounded noise case.

that the estimation error e(k)(≜ ∥θ̃k∥) finally undulates in [0, Bk],
hich confirms the results of Theorem 3.
Example 3: Consider a second-order FIR system with stochas-

tic noise: yk+1 = ϕT
k θ + dk+1, where the output only can be

easured by binary observation (2). The true parameter θ =

3, −2]T is unknown, only can we learn θ ∈ Θ = [−4, 4] ×

[−3, 3]. The system noise dk+1 follows N(0, 62). The inputs are
periodically generated by ϕ2k+1 = [−1, 0]T , ϕ2k = [0, 1]T , satisfy-
ing Assumption 2.1. The estimate θ̂k is given by the algorithm (5),
where β = 50 satisfies Theorem 5. Here we repeat the simulation
for 500 times to eliminate effects of stochastic noises with the
same initial estimate θ̂0 = [1, −1]T .

The simulation results are given in Fig. 3. From it, we can learn
the estimate converges to the true value, and the logarithm of
the mean square error (MSE) is linear with the logarithm of the
index k, which indicates the mean square convergence rate of
estimation error is O( 1k ).

6. Conclusion

In this paper, we have investigated the sign-error type re-
cursive projection algorithm, which could identify FIR systems
with binary-valued observations under the bounded persistent
excitation condition. It is worth mentioning that this is a uni-
fied algorithm, which not only could solve system identification
problems under the deterministic framework but also can esti-
mate the unknown parameter under the stochastic framework.
Moreover, this is the first result of the sign-error type algorithm
in a deterministic setting to the best of our knowledge. Under
the deterministic framework, the convergence of the unified al-
gorithm is established and the convergence rate is proved to be
close to O

(
1
k2

)
for the noise-free case, the upper bound of the es-

imation error is obtained for the bounded noise case. Meanwhile,
nder the stochastic framework, the algorithm convergence is
iven in the sense of mean square and almost sure with i.i.d.
tochastic noises. Besides, the mean square convergence rate of
he estimation error is proved as O( 1k ).

There are many meaningful topics for future works, for exam-
ple, whether the unified algorithm is suitable for more complex
systems with binary-valued observations, such as ARMAX sys-
tems? How do we remove the assumption about the boundness
of inputs?
9

Fig. 3. The stochastic noise case.

ppendix A. Useful tools

In this part, some lemmas are collected and established, which
re frequently used in the analysis of convergence and conver-
ence rate.

emma A.1. If Assumption 2.1 holds, then for any positive integer
we have

θ̃k+p − θ̃k∥ ≤

k+p−1∑
i=k

βϕ̄

ri+1
≤

pβϕ̄

rk+1
.

The proof is similar to Lemma 8 in Guo and Zhao (2013), so
the detail proof is omitted.

Lemma A.2. (Chen, 2002) Let (vk,Fk), (wk,Fk) be two nonnegative
adapted sequences. If E(vk+1|Fk) ≤ vk + wk and E

∑
∞

i=1 wk < ∞,
then vk converges a.s. to a finite limit.

Lemma A.3. (Zhao et al., 2019) For any given a ∈ R, we have the
assertions:
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(∏
(

∑

L

P∏

T

=

F

∥

T
s

θ

F

i)
k

i=1

(
1 −

a
i

)
= O

(
1
ka

)
,

ii)

k

l=1

k∏
i=l+1

(
1 −

a
i

) 1
l2

=

⎧⎪⎨⎪⎩
O
( 1
ka
)
, a < 1,

O
( ln k

k

)
, a = 1,

O
( 1
k

)
, a > 1.

emma A.4. For any given a ∈ (0, 1), we have
k∑

l=1

k∏
i=l

(
1 −

1
ia

)
1
l2

= O
(

1
k2−a

)
.

roof. Note that
k

i=l

(
1 −

1
ia

)
= e

∑k
i=l ln(1−

1
ia )

= O
(
e−

∑k
i=l

1
ia
)

= O
(
e

1
1−a (l

1−a
−k1−α )

)
.

hen,

k∑
l=1

k∏
i=l

(
1 −

1
ia

)
1
l2

= O

⎛⎜⎝∑k
l=1

e
1

1−a l1−a

l2

e
1

1−a k
1−a

⎞⎟⎠
O

⎛⎜⎝ e
1

1−a k1−α

k2

k−ae
1

1−a k
1−a

⎞⎟⎠ = O
(

1
k2−a

)
.

Hence, the conclusion is established. □

Appendix B. Proof of Theorem 2

The proof can be divided into the following steps.
Step 1: To prove ∥θ̃k∥

2
= O

( 1
k

)
.

From Theorem 1 we know limk→∞ |ϕT
k θ̃k| = 0. So, there exists

κ1 = k1N > 0 such that when k > κ1, |ϕT
k θ̃k| ≥ |ϕT

k θ̃k|
2
. Thus, by

(11), when k > κ1, we have

∥θ̃k+1∥
2

≤∥θ̃k∥
2
−

2β|ϕT
k θ̃k|

2

rk+1
+

β2
∥ϕk∥

2

r2k+1

≤∥θ̃k−N+1∥
2
−

k∑
i=k−N+1

2βθ̃ T
i ϕiϕ

T
i θ̃i

ri+1

+

k∑
i=k−N+1

β2
∥ϕi∥

2

r2i+1
. (B.1)

rom Assumption 2.2, we have

θ̃k∥ = ∥θ̂k − θ∥ ≤ ∥θ̂k∥ + ∥θ∥ ≤ θ̄ , ∀k ≥ 0. (B.2)

he above result can be also obtained without Assumption 2.2,
ince θ̃k converges to 0.
Noticing

˜ T
i ϕiϕ

T
i θ̃i =θ̃ T

k−N+1ϕiϕ
T
i θ̃k−N+1 + ((θ̃i − θ̃k−N+1)Tϕi)2

+ 2(θ̃i − θ̃k−N+1)Tϕiϕ
T
i θ̃k−N+1

≥θ̃ T
k−N+1ϕiϕ

T
i θ̃k−N+1

+ 2(θ̃i − θ̃k−N+1)Tϕiϕ
T
i θ̃k−N+1, (B.3)
10
and from (14), (B.2) and Lemma A.1, it follows that,

−

k∑
i=k−N+1

θ̃ T
i ϕiϕ

T
i θ̃i

ri+1

≤ −

k∑
i=k−N+1

θ̃ T
k−N+1ϕiϕ

T
i θ̃k−N+1

ri+1

+ 2ϕ̄2θ̄

k∑
i=k−N+1

∥θ̃i − θ̃k−N+1∥

ri+1

≤ −
δ2N∥θ̃k−N+1∥

2

rk+1
+ 2ϕ̄2θ̄

k∑
i=k−N+1

βNϕ̄

r2k−N+2

≤ −
δ2N∥θ̃k−N+1∥

2

rk+1
+ O

(
1

(k − N + 1)2

)
, (B.4)

for k ≥ N . Substituting (B.4) into (B.1) gives

∥θ̃k+1∥
2

≤

(
1 −

2δ2βN
rk+1

)
∥θ̃k−N+1∥

2
+ O

(
1

(k − N + 1)2

)

≤

⌊
k
N

⌋
−k1−1∏
j=0

(
1 −

2δ2βN
rk+1−jN

)θ̃k+1−
⌊
k−κ1
N

⌋
N

2

+

⌊
k
N

⌋
−k1∑

j=1

j−1∏
i=0

(
1 −

2δ2βN
rk+1−iN

)
O
(

1
(k − jN + 1)2

)
. (B.5)

or brevity, let κ = ⌈
k
N ⌉ −

⌊ k
N

⌋
. On one hand, the first item on

the right side of inequality (B.5) is
⌊

k
N

⌋
−k1−1∏
j=0

(
1 −

2δ2βN
rk+1−jN

)

≤

⌈
k
N

⌉
−k1∏

m=κ+1

(
1 −

2δ2βN
r(m+k1)N+1

)

≤

⌈
k
N

⌉
−k1∏

m=κ+1

(
1 −

2δ2βN
1 + (m + k1)Nϕ̄2

)

≤

⌈
k
N

⌉
−k1∏

m=κ+1

(
1 −

2δ2β
(m + k1)(ϕ̄2 + 1)

)

=O

⎛⎜⎝
⌈

k
N

⌉
−k1∏

m=κ+1

⎛⎝1 −

2δ2β

ϕ̄2+1

m + k1

⎞⎠
⎞⎟⎠ . (B.6)

On the other hand, the second item on the right side of inequality
(B.6) is
⌊

k
N

⌋
−k1∑

j=1

j−1∏
i=0

(
1 −

2δ2βN
rk+1−iN

)
O
(

1
(k − jN + 1)2

)

≤

⌊
k
N

⌋
−k1∑ j−1∏(

1 −
2δ2βN
rk+1−iN

)
O

(
1

(
⌊ k ⌋

− j + 1)2N2

)

j=1 i=0 N
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≤

≤

≤

A

t

k
|

k

∥

B

S

+

S

·

p

f

O

⎛⎜⎝
⌊

k
N

⌋
−k1−1∏
j=0

(
1 −

2δ2βN
rk+1−jN

)⎞⎟⎠
+

⌊
k
N

⌋
−k1−1∑
j=1

j−1∏
i=0

(
1 −

2δ2βN
rk+1−iN

)
O

(
1

(
⌊ k

N

⌋
− j + 1)2N2

)

O

⎛⎜⎝
⌈

k
N

⌉
−k1∏

m=κ+1

⎛⎝1 −

2δ2β

ϕ̄2+1

m + k1

⎞⎠
⎞⎟⎠

+

⌊
k
N

⌋
−k1−1∑

m=1

⌈
k
N

⌉
−k1∏

p=κ+m+1

⎛⎝1 −

2δ2β

ϕ̄2+1

p + k1

⎞⎠O
(

1
(m + k1)2N2

)

O

⎛⎜⎝
⌈

k
N

⌉∏
m=k1+κ+1

⎛⎝1 −

2δ2β

ϕ̄2+1

m

⎞⎠
⎞⎟⎠

+

⌊
k
N

⌋
−1∑

m=k1

⌈
k
N

⌉∏
p=κ+m+1

⎛⎝1 −

2δ2β

ϕ̄2+1

p

⎞⎠O
(

1
m2

)
. (B.7)

s above, from (B.5)–(B.7) and Lemma A.3, when 2δ2β

ϕ̄2+1
> 1, we

obtain ∥θ̃k∥
2

= O( 1k ).

Step 2: Prove ∥θ̃k∥
2

= O
(

1
k1+t1

)
using ∥θ̃k∥

2
= O

( 1
k

)
, where

1 =
r−1
2 > 0.

From ∥θ̃k∥
2

= O( 1k ), ∥ϕk∥ ≤ ϕ̄ and 1 + nδ2 (k − N) ≤ rk+1 ≤

ϕ̄2
+ 1, there exist κ2 = k2N and t1 =

r−1
2 ∈ (0, 1

2 ) such that
ϕT
k θ̃k| ≥ r t1k+1|ϕ

T
k θ̃k|

2
and ∥θ̃k∥ < 1

r
t1
k+1

for k > κ2. Thus, when

> κ2, we have

θ̃k+1∥
2

≤∥θ̃k∥
2
−

2β|ϕT
k θ̃k|

2

r1−t1
k+1

+
β2

∥ϕk∥
2

r2k+1

≤∥θ̃k−N+1∥
2
−

k∑
i=k−N+1

2βθ̃ T
i ϕiϕ

T
i θ̃i

r1−t1
i+1

+

k∑
i=k−N+1

β2
∥ϕi∥

2

r2i+1
. (B.8)

y (B.3) and ∥θ̃k∥ < 1
r
t1
k+1

, similarly to (B.4) we get

−

k∑
i=k−N+1

θ̃ T
i ϕiϕ

T
i θ̃i

r1−t1
i+1

≤ −

k∑
i=k−N+1

θ̃ T
k−N+1ϕiϕ

T
i θ̃k−N+1

r1−t1
i+1

−

k∑
i=k−N+1

2(θ̃i − θ̃k−N+1)Tϕiϕ
T
i θ̃k−N+1

r1−t1
i+1

≤ −
δ2N∥θ̃k−N+1∥

2

r1−t1
k+1

+ O
(

1
(k − N + 1)2

)
. (B.9)
11
Substituting (B.9) into (B.8) gives

∥θ̃k+1∥
2

≤

⌊
k
N

⌋
−k2−1∏
j=0

(
1 −

2δ2βN

r1−t1
k+1−jN

)θ̃k+1−
⌊
k−κ2
N

⌋
N

2

+

⌊
k
N

⌋
−k2∑

j=1

j−1∏
i=0

(
1 −

2δ2βN

r1−t1
k+1−iN

)
O
(

1
(k − jN + 1)2

)
. (B.10)

imilarly to (B.6) and (B.7), we have⌊
k
N

⌋
−k2−1∏
j=0

(
1 −

2δ2βN

r1−t1
k+1−jN

)

= O

⎛⎝⌈
k
N ⌉−k2∏

m=κ+1

⎛⎝1 −

2δ2βNt1

(ϕ̄2+1)1−t1

(m + k2)1−t1

⎞⎠⎞⎠ , (B.11)

where κ = ⌈
k
N ⌉ −

⌊ k
N

⌋
, and⌊

k
N

⌋
−k2∑

j=1

j−1∏
i=0

(
1 −

2δ2βN

r1−t1
k+1−iN

)
O
(

1
(k − jN + 1)2

)

=O

⎛⎝ ⌈
k
N ⌉∏

m=k2+κ+1

⎛⎝1 −

2δ2βNt1

(ϕ̄2+1)1−t1

m1−t1

⎞⎠⎞⎠
⌊

k
N

⌋
−1∑

m=k2

⌈
k
N

⌉∏
p=κ+m+1

⎛⎝1 −

2δ2βNt1

(ϕ̄2+1)1−t1

p1−t1

⎞⎠O
(

1
m2

)
. (B.12)

As above, by 2δ2βNt1

(ϕ̄2+1)1−t1
>

2δ2β

ϕ̄2+1
> 1, Lemma A.4 and (B.10)–(B.12),

we obtain

∥θ̃k∥
2

= O
(

1
k1+t1

)
.

Step 3: Prove ∥θ̃k∥
2

= O
(

1
k1+t2

)
, where t2 = t1 +

1
2 t1 =

3(r−1)
4 .

imilarly to Step 2, we can prove that by ∥θ̃k∥
2

= O
(

1
k1+t1

)
.

...

Step m + 1: Prove ∥θ̃k∥
2

= O
(

1
k1+tm

)
, where tm = t1 +

1
2 t1 +

· · +
1

2m−1 t1 =
2m−1
2m (r − 1). Similarly to Step 2, it also can be

roved by using ∥θ̃k∥
2

= O
(

1
k1+tm−1

)
.

By the definition of tm, limn→∞ tm = r−1. Repeating the above
process, we can get ∥θ̃k∥

2
= O

( 1
kr
)
. □

Appendix C. Proof of Theorem 3

Let uk = ϕT
k θ̃k. For α ∈

(
0, 1

√

N3

)
, let c > 1

1−N3α2 > 1. Then,
rom Assumption 2.1, Lemma A.1 and β = 1, we have

u2
k + u2

k+1 + · · · + u2
k+N−1 =

k+N−1∑
l=k

θ̃ T
l ϕlϕ

T
l θ̃l

≥θ̃ T
k

(
k+N−1∑
l=k

ϕlϕ
T
l

)
θ̃k +

k+N−1∑
l=k

2(θ̃l − θ̃k)Tϕlϕ
T
l θ̃k

+

k+N−1∑
(θ̃l − θ̃k)Tϕlϕ

T
l (θ̃l − θ̃k)
l=k
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≥

≥

D
w

l
o

|

≤

t

∞

∥

j
c

S

w

(
1 −

1
c

)
θ̃ T
k

(
k+N−1∑
l=k

ϕlϕ
T
l

)
θ̃k

− (c − 1)
k+N−1∑
l=k

(θ̃l − θ̃k)Tϕlϕ
T
l (θ̃l − θ̃k)

(
1 −

1
c

)
δ2∥θ̃k∥

2
− (c − 1)

γ ϕ̄4

r2k+1
.

where γ =
∑N−1

l=1 l2. Hence, from rk+1 ≥ 1 + nδ2(k − N), when
k > N +

√
(c−1)γ

1− 1
c −N3α2

αϕ̄2

nd̄δ2
and ∥θ̃k∥ > d̄

αδ
, we get

1
N

k+N−1∑
l=k

u2
l ≥

(
1 −

1
c

)
δ2

N
∥θ̃k∥

2
− (c − 1)

γ ϕ̄4

Nr2k+1

≥ (Nd̄)2. (C.1)

And by (5), β = 1 and uk = ϕT
k θ̃k, we have

∥θ̃k+1∥
2

≤ ∥θ̃k∥
2
−

2ϕT
k θ̃k sign{ϕT

k θ̃k − dk+1}

rk+1
+

∥ϕk∥
2

r2k+1

≤ ∥θ̃k∥
2
−

2uk sign{uk − dk+1}

rk+1
+

ϕ̄2

r2k+1
. (C.2)

efine t = max{N +

√
(c−1)γ

1− 1
c −N3α2

αϕ̄2

nd̄δ2
,N +

2N2ϕ̄2

nδ2
+

2Nϕ̄2

nd̄δ2
+

N2ϕ̄3

nαδ3
},

here c > 1
1−N3α2 .

Then we divide the proof into two steps.
Step 1: Prove there exists k0 > t , such that ∥θ̃k0∥ ≤

d̄
αδ
.

Without loss of generality, we suppose ∥θ̃l∥ > d̄
αδ

for all
∈ Lt ≜ {t, t + 1, . . . , t + N − 1}, otherwise the conclusion is
bvious. By ∥θ̃t∥ > d̄

αδ
, from (C.1) and Proposition 1 we learn∑

ul|>d̄,l∈Lt

|ul| > Nd̄ ≥ (N − 1)d̄ ≥

∑
|ul|≤d̄,l∈Lt

|ul|.

From (C.2), we can get
(1) when |ul| ≤ d̄, we have ∥θ̃l+1∥

2
≤ ∥θ̃l∥

2
+

2|ul|
rl+1

+
∥ϕl∥

2

r2l+1
;

(2) when |ul| > d̄, we have ∥θ̃l+1∥
2

≤ ∥θ̃l∥
2
−

2|ul|
rl+1

+
∥ϕl∥

2

r2l+1
.

Therefore,

∥θ̃t+N∥
2

≤∥θ̃t∥
2
+

t+N−1∑
l=t

∥ϕl∥
2

r2l+1
−

∑
|ul|>d̄,l∈Lt

2|ul|

rl+1
+

∑
|ul|≤d̄,l∈Lt

2|ul|

rl+1

≤∥θ̃t∥
2
+

t+N−1∑
l=t

∥ϕl∥
2

rl+1rl
−

2Nd̄
rt+N

+
2(N − 1)d̄

rt+1

≤∥θ̃t∥
2
+

t+N−1∑
l=t

(
1
rl

−
1

rl+1

)
−

2Nd̄
rt+N

+
2(N − 1)d̄

rt+1

∥θ̃t∥
2
−

2Nd̄ −
rt+N
rt+1

2(N − 1)d̄ −
rt+N−rt

rt

rt+N

≤∥θ̃t∥
2
−

2d̄ −
2(N−1)2ϕ̄2 d̄

rt+1
−

Nϕ̄2

rt

rt+N
≤ ∥θ̃t∥

2
−

d̄
rt+N

,

where the last inequality is got by rt+1 ≥ 1 + n(t − N)δ2 and
> N +

2N2ϕ̄2
+

2Nϕ̄2
+

N2ϕ̄3
> 2N +

2N2ϕ̄2
+

Nϕ̄2
.

nδ2 nd̄δ2 nαδ3 nδ2 nd̄δ2

12
For rt+1 ≥ 1+nδ2 (t − N) and harmonic progression
∑

∞

l=1
1
l =

, there exists k0 ≥ t such that ∥θ̃k0∥ ≤
d̄
αδ
.

Step 2: Show ∥θ̃k+N∥ ≤
d̄
αδ

+
Nϕ̄

rk+1
for all k ≥ k0.

From (5), (18), β = 1 and Remark 2.3, we can get

θ̃k+1∥ = ∥θ̂k+1 − θ∥ ≤

θ̃k +
ϕk

rk+1
sk+1


≤ ∥θ̃k∥ +

∥ϕk∥

rk+1
.

Hence, for all l ∈ {k0 + 1, . . . , k0 + N}, using ∥θ̃k0∥ ≤
d̄
αδ

we get

∥θ̃l∥ ≤ ∥θ̃k0∥ +

l−1∑
i=k0

∥ϕi∥

ri+1

≤∥θ̃k0∥ +
(l − k0)ϕ̄
rk0+1

≤
d̄
αδ

+
Nϕ̄

rl−N+1
. (C.3)

Assume ∥θ̃k1∥ ≤
d̄
αδ

+
Nϕ̄

rk1−N+1
when k = k1 ≥ k0 + N . Then, we

ust need to prove ∥θ̃k1+N∥ ≤
d̄
αδ

+
Nϕ̄

rk1+1
. We need to consider two

ases.
One is ∥θ̃k1∥ ≤

d̄
αδ
. In this case, we can prove ∥θ̃k1+N∥ ≤

d̄
αδ

+
Nϕ̄

rk1+1
similarly to (C.3).

The other case is ∥θ̃k1∥ > d̄
αδ
. In this case, by (C.1) and k1 >

k0 ≥ t > N +

√
(c−1)γ

1− 1
c −N3α2

αϕ̄2

nd̄δ2
, we have

1
N

k1+N−1∑
l=k1

u2
l ≥ (Nd̄)2.

imilarly to Step 1, we can learn

∥θ̃k1+N∥
2

≤ ∥θ̃k1∥
2
+

k1+N−1∑
l=k1

∥ϕl∥
2

r2l+1

−

∑
|ul|>d̄,l∈Lk1

2|ul|

rl+1
+

∑
|ul|≤d̄,l∈Lk1

2|ul|

rl+1

≤∥θ̃k1∥
2
+

k1+N−1∑
l=k1

(
1
rl

−
1

rl+1

)
−

2Nd̄
rk1+N

+
2(N − 1)d̄

rk1+1

≤

(
d̄
αδ

+
Nϕ̄

rk1−N+1

)2

+
Nϕ̄2

rk1 rk1+N
−

2Nd̄
rk1+N

+
2(N − 1)d̄

rk1+1
,

here Lk1 ≜ {k1, k1 + 1, . . . , k1 + N − 1}.
To prove ∥θ̃k1+N∥ ≤

d̄
αδ

+
Nϕ̄

rk1+1
, we only need to prove

(
d̄
αδ

+
Nϕ̄

rk1−N+1

)2

+
Nϕ̄2

rk1 rk1+N
−

2Nd̄
rk1+N

+
2(N − 1)d̄

rk1+1

≤

(
d̄
αδ

+
Nϕ̄

rk1+1

)2

. (C.4)

By k1 > k0 ≥ t ≥ N +
2N2ϕ̄2

nδ2
+

Nϕ̄2

nd̄δ2
+

2N2ϕ̄3

nαδ3
, we have rk1+1 ≥

2N2ϕ̄2
+

2Nϕ̄2

d̄
+

N2ϕ̄3

αδ
, rk1−N+1 ≥ N2ϕ̄2

≥ Nϕ̄2, and then

d̄rk1+1 − (N − 1)2ϕ̄2d̄
2 N2ϕ̄3 d̄

≥
rk1+1 + (N − 1)ϕ̄2

r − Nϕ̄2 ≥
rk1+N

r
.

2Nϕ̄ +
αδ

k1+1 k1−N+1
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B

T

∥

T

∥

f

R

A

C

C

F

G

G

G

K

P

S

T

W

W

W

Y

Y

Z

Z

Z

Z

Z

y rk1−N+1 ≥ N2ϕ̄2, we have 2N3ϕ̄4

rk1−N+1
≤ 3Nϕ̄2. And then, by

rk1−N+1+rk1+1
rk1+1

≤ 2 and rk1+1 − rk1−N+1 ≤ Nϕ̄2, we have

N2ϕ̄2

(
1

r2k1−N+1
−

1
r2k1+1

)
+

Nϕ̄2
+

2N2ϕ̄3 d̄
αδ

rk1+1rk1−N+1

≤
2d̄rk1+1 − 2(N − 1)2ϕ̄2d̄

rk1+1rk1+N
.

hus, by rk1+1rk1−N+1 ≤ rk1 rk1+N , we get (C.4), and then,

θ̃k1+N∥ ≤
d̄
αδ

+
Nϕ̄

rk1+1
.

herefore, by mathematical induction, we have

θ̃k+N∥ ≤
d̄
αδ

+
Nϕ̄

rk+1
, ∀k ≥ k0,

or all α ∈

(
0, 1

√

N3

)
.
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